
LFC Guidelines

Daniel Secrieru
(dsecrieru@hotmail.com)

1



Following are a set of working guidelines for LFC developers. This is still a
draft paper a may suffer modifications. However, all the team members should
read these guidelines and try to follow them as close as possible. Thank you for
your understanding! :-)

1 Guidelines

• this is a friendly team; we all work voluntarily and because we love to code

• nobody will be forced to do anything that he/she doesn’t want. Every-
body will work on whatever he/she decides, but will finish that task and
will not rely on someone else to do his job, unless he/she has good reasons
for that and agrees with another team member to get help

• all discussions concerning LFC development will be held on the LFC-
development list

• if you aren’t already, get familiar with using tools like cvs, ssh, doxygen,
latex, not to mention the compilers (gcc, bcc)

• time, time, time... time is everything! Each task should have a clear
timeframe planification, and everybody should strive to hit the deadlines
(without sacrificing the quality of comments, documentation, tests, ...).
The dependencies between tasks should be very clear. Team members are
expected to come with some realistic (not optimistic) estimations of the
time necessary to finish a task and should take this in account when asking
to work on a task to match his/her available time. Tasks that take longer
than 3-4 days should be broken into subtasks that can be finished in no
more that 3-4 days for the purpose of scheduling

• the development process of a LFC module should take the following steps:

– every developer should think about the overal design of the task
he/she is working on and post a proposal on the list, that is, sort of
a briefing

– big decisions like design are usually taken by the team and when the
developer gets a green light from the team concerning his/hers pro-
posal, he/she should start working on the interface for the class/module
he/she is working on. When done, the developer should post a first
RFC on the list, so that the team may comment the design. More

2



RFCs could follow if the developer must make modifications to the de-
sign, based on the team’s comments. Consult /doc/papers/rfcSample.tex
to see how an RFC is supposed to look like. This is probably the most
important step in the development of a task and keep in mind that
the RFCs are the tool with which one acomplishes this step

– if everything is alright, the next step is implementation. When done,
the developer should post a code review on the list, containing an
archive with the code

– only when the code review(s) have passed one team member approval
(or more, if the task/modifications are more complex), the developer
can commit the code into the repository. The code reviewing can be
efficiently achieved by following a file diff (use a diff utilitary)

• here are a few important things that should accompany the development
process of a LFC module:

– every developer should maintain the doxygen documentation for its
module and update it if necessary

– every developer will write some tests for its module, which will be
located in /tests

– every developer will write some tutorials and a detailed latex doc on
how to use his/hers module, if not trivial

– when working on some task, every developer should maintain a doc
with whatever resources he/she used in the developing process (links,
articles, white papers, books, ...)

– every checkin should have a brief description about the contents,
modifications, testes etc.

• all developers should follow the LFC coding style, which is to be found in
/doc/papers/codingStyle.tex

• a few cross-platform development related issues:

– LFC is cross-platform, so any cross-platform task like sockets/networking
or GUI support will be developed cross-platform. That means that
every developer should have acces to both Unix and Windows sys-
tems, or at least those working on cross-platform tasks. However,
if that’s not the case, a cross-platform task can be split between
developers on different platforms

– the design of the PALs should take into account all the targeted
platforms

3



– every and all features of a cross-platform module should be throughly
tested on all supported platforms

• all the comments/suggestions of team members to list postings/proposals/RFCs/code
reviews should be concise and easy to understand. Criticism is allowed,
only if it’s constructive . Unnecessary ’hostile’ behaviour should be avoided.
Opinions should be kept objective and not rely on subjective tastes. If
there’s no other way, please warn that a personal opinion is following and
should be viewed as such

4


