LFC Callbacks

Leonard Mosescu
(lemo@metasoft.ro)

1 Introduction

Let’s take a look over the gsort function, from the C standard library. The
(gsort function sorts C-style arrays of any type, by making use of the Quick-
Sort algorithm). Here is what the prototype of this function looks like:

void gsort(void *base, size_t nmemb, size_t size,
int (*compare) (const void *, const void *));

As you can see, the gsort function has 4 arguments:

base - pointer to the first element of the array to be sorted

nmemb - the number of elements of the array

size - the size of an element

compare - a pointer to a function that takes 2 void pointers as arguments and
returns an integer

The last argument is the one that offers great flexibility to the gsort func-
tion, as the function pointed to by compare establishes the order relationship
between the array elements, relationship which will be used in the sorting oper-
ation. The function pointed to by compare takes the addresses of two elements
and returns an integer value less than, equal to or greater than 0, if the first
element is respectively less than, equal to or greater than the second.

This way, the gsort function can be used at sorting integers, strings or
objects of any other data type, by allowing the programmers to implement a
comparison function for each data type. Moreover, it’s possible to write different
versions of the comparison function, comparing objects of the same data type
by different sorting criteria (e.g. objects of type Employee, can be sorted by
their experience, salary, or name).

Let us consider a small example in which we will use the gsort function to
sort integer arrays:

// this function establishes an order relation
int cmpInt(const void *pl, const void *p2)

{



return *(const int *)pl - *(const int *)p2;

}
void main()
{
int t[100];
. here we fill t ...
// we sort t in ascending order
gsort(t, 100, sizeof(int), &cmpInt);
. here we can use t, as sorted by the cmpInt function ...
}

This mechanism, through which the address of a function is passed to another
code block, in order to be called by it, is called a callback. The callback
mechanism is a very powerful one, as it enables the parametrisation with the
behaviour implemented by an algorithm (module). The author of the gsort
function, for example, couldn’t have known what kind of datatypes would be
sorted, or what sorting criteria must be applied at the moment of implemenitng
the sorting algorithm, but has allowed for the user of the gsort function to
write his/her own comparison function,and that function will be called every
time two elements need to be sorted (please observe that the functions used as
a sorting criteria in gsort function can have any name, but they must obey the
prototype specified by gsort’s designer).

The callback mechanism can be used in situations where the user of a
module wishes to 'register’ his own function, in order to be called from inside
the module, for signaling different events or to execute some actions, including
the returning of values.

Here are listed some of the most common uses of the callback mechanism:

1. GUI events
2. Generic algorithms
3. Internal iterators

4. System events

So far we’ve described the implementation of the callback mechanism using
pointers to functions in C/C++, an implementation which is very efficient (the
time required by a call to a function through a pointer to that function is quite
close to a normal function call), but when we are writing code in C++, using
classes and objects, we encounter an important limitation: pointers to functions
can only take the address of a global function or that of a static method. When



using classes and objects in C++, it’s useful to be able to use methods of some
class as callbacks. Nonstatic methods of a class have a different semantic from
the global functions, meaning that a nonstatic method call is associated to an
object. In C++, a method call like:

object.method(argl, arg2, ..., argN);
has a very close effect to a function call like:
function(&object, argl, arg2, ..., argh);

We can see that in the function call we have as an extra argument the
address of the object. This extra argument stands as the ’hidden’ argument
this in C++, amd it’s present in the call of every nonstatic method. Because
of that, pointers to functions can’t point to nonstatic methods, even if they do
have the same arguments list. C++ doesn’t even accept the simulation of a
method by explicitly adding this argument in the declaration of a pointer to a
function. Although we may believe that this trick might work, the semantics of
constant objects and of virtual methods would not permit this.

C++ offers us instead pointers to class members. Although their name might
fool us, pointers to class members don’t represent an absolute address but an
offset inside an object. In practice, pointers to members are used together with
pointers to objects. Unfortunately, the effective use of a pointer to member
- pointer to object pair it’s not as easy as the use of simple pointers. The
biggest problem is that that in the moment of the declaration of the pointer to
member and of the pointer to object, the class of the object must be known.
Normally, we’d like to be able to declare the pointers to the methods knowing
only the returned type and the arguments list (as soon as some class appears
in the pointer’s declaration, we won’t be able to use anything except objects
and methods from that class, and so the flexibility of the callback mechanism
disappears).

In order to keep the simplicity and flexibility of the callback mechanism, in
the context of using C++ classes and objects, LFC provides a set of classes that
wraps the necessary information needed for global functions calls, of static/nonstatic
methods, in a simple and elegant way. The careful use of the powerful features
provided by the C++ programming language, especially that of the template
mechanism, have lead to the implementation of a kind of callback mechanism,
which provides some advantages:

e simplicity
e static type checking of the return type and arguments list

callbacks to functions and to methods have the same semantics

flexibility (the callbacks can be methods of any C++ class)

e the posibility to provide a suplimentary, constant argument



e the callbacks can return values
e a C++ exception gets thrown when attempting to call a null callback
e calling speed is comparable to that of normal functions/methods

e it’s doesn’t require language modifications or source processing with ex-
ternal utilities

e natural semantics for callback typed objects: ==, !=, =, copy

e low coupling

2 LFC Callbacks - review

II11111777777707777777777777777777777777777777777777777777777777

class IntVector
{
public:
IntVector() { init(callback(&IntVector::zero)); }

public:
void init(CallbackO<int> cb);
void forEach(Callbackl<void, int> cb);

protected:
static int zero() { return 0; }

protected:
int m_data[10];
+;

void IntVector::init(CallbackO<int> cb)
{
for(int i = 0; i < 10; i++)
m_datal[i]l = cb();
}

void IntVector::forEach(Callbackl<void, int> cb)
{
for(int i = 0; i < 10; i++)
cb(m_datali]);



II1171177777777777777777777777777777777777777777777777777777777

class Fibonaci

{
public:
Fibonaci() { m_,a =1; m_b = 0; }
public:
int getNext()
{
int ¢ = m_a + m_b;
m_a = m_b;
m_b = c;
return m_b;
}
protected:
int m_a, m_b;
};

II1I11177777707777777777777777777777777777777777777777777777777

class ConsecutiveNumbers
{
public:
ConsecutiveNumbers() { m_current = 0; }

public:
int getNext() { return m_current++; }

protected:
int m_current;

};
[11711117777777/77777777/77777777777/7777777777/777777/7/7/7777777

class Sum
{
public:
Sum() { m_sum = 0; }

public:
void addNumber (int number) { m_sum += number; }
void print() { printf("sum = %d\n", m_sum); }



protected:
int m_sum;

3
11771777777717777777777777771777777777777711117777777777111177
void printInt(int i)

' printf ("%d\n", i);

}
L117777777771177777777777777717777777777777177177777777771711777

int readInt()

{
int tmp;
printf (">");
scanf ("%d", &tmp);
return tmp;
}

II11711177777707777777777777777777777777777777777777777777777777

void main()

{
IntVector v;
Fibonaci fib;
ConsecutiveNumbers cons;
Sum suml, sum?2;

v.init(callback(&readInt));
v.forEach(callback(&suml, &Sum::addNumber));
suml.print();

v.init(callback(&cons, &ConsecutiveNumbers::getNext));
v.forEach(callback(&printInt));

v.forEach(callback (&sum2, &Sum::addNumber));
sum2.print();

v.init(callback(&fib, &Fibonaci::getNext));
v.forEach(callback(&printInt));



3 Detailed presentation

3.1 Callback types

LFC offers developers the next 6 template classes categories, for callbacks with
cu 0..5 arguments:

template<class RT> class CallbackO;

template<class RT, class T1> class Callbackl;

template<class RT, class T1l, class T2> class Callback2;

template<class RT, class T1l, class T2, class T3> class Callback3;

template<class RT, class T1l, class T2, class T3, class T4> class Callback4;
template<class RT, class T1l, class T2, class T3, class T4, class T5> class Callbackb;

The declaration of an callback object is done as follows:
CallbackN<RT, T1, ..., TN> callbackObject;

where N represents the number of arguments (0..5), RT is the returned
type and T1, ..., TN are the arguments’ types. For example, a callback with 2
arguments (an int and a float) which returns a bool will be declared as follows:

Callback2<bool, int, float> cbi;

A callback without any arguments, which returns a char *, will be declared
in the following way:

CallbackO<char *> cb2;

You may notice that the callback classes (objects) are used in exactly the
same manner as any other C++ template classes (Note: be careful not to use the
name callback for identifiers, because you may get a conflict with the template
function callback()).

LFC callback classes were designed in such a manner, so that callback ob-
jects may have a natural usage: callback objects can be staticaly, automaticaly
(on the free store) or dynamically allocated and can be passed by value or by
reference (the copy constructor and operator=() were redefined to ensure the
consistency of pass-by-value semantics).

3.2 Calling callback objects

Callback objects have the function call operator defined, in order to allow their
use in a simple and elegant way (their calling is done in the same way as calling
a function). For example, a callback with an double argument, which returns a
long, is called as following:



Callbackl<long, double> myCallback;
. myCallback initialization with a method/function ...

// callback call
long retValue = myCallback(3.14);

3.3 Constructors

Each callback class has more than one template constructor, in order to allow
the initialization of a callback object with:

e null callback

e callback to static function/method

e callback to static function/method 4 aux constant
e callback to non-static method

e callback to non-static method + aux constant

e copy constructor (from a callback of the same type)

e callback to callback + aux constant

3.4 The callback() function

Even if you can use the above constructors for creating callback objects, in
practice they are hard to use, because one must completely specify the template
class (returned type, arguments’ types). That’s why LFC provides a simpler
alternative to the direct use of constructors: a set of template functions called
"callback()’, which can be used to build callback objects compatible with the
function/method passed as a argument. For example:

int f(double, double, void *)
{

+
void test()
{
Callback3<int, double, double, void *> cbil;

// direct use of constructor
cbl = Callback3<int, double, double, void *>(&f);



// the same effect gained by using the callback() function
cbl = callback(&f);

// in this case, the use of the constructor is preffered
Callback3<int, double, double, void *> cb2(&f);
Callback3<int, double, double, void *> cb3 = callback(&f);

3.5 Callback objects comparison

Two callback objects are considered equal if they are of the same type and if their
calling has the same effect (that is if they point to the same function/method
and with the same auxiliary value, if any). Testing if two callback objects of
the same type are equal/different can be achieved using the operators ==, |=
(comparing different types of callbacks makes no sense).

Note: In the case of callbacks with an auxiliary value, the comparison can
be done only if the operators ==, !|= are defined for the type of the auxiliary
value.

3.6 Null callbacks

The null callbacks are the callback objects that do not point to any func-
tion/method. Null callbacks are build by the constructor with empty arguments
list.

Testing if a callback is null can be done in the following way:

Callbackl<void, int> cb;

if (cb == Callbacki<void, int>())
{

}

The call of a null callback will generate an exception.
4 LFC Callbacks Reference

template<TEMPL> class CallbackN

public:
CallbackN()

CallbackN(RT (*pf) (TYPES))

template<class TAUX>



CallbackN(RT (*pf)(TYPES, TAUX), TAUX aux)

template<class 0T, class MT>
CallbackN(OT #*po, RT (MT::*om) (TYPES))

template<class 0T, class MT, class TAUX>
CallbackN(OT #*po, RT (MT::*om) (TYPES, TAUX), TAUX aux)

CallbackN(const CallbackN<TEMPL> &cb)

template<class TAUX>
CallbackN(const CallbackN2<TEMPL, TAUX> &cb, TAUX aux)

“CallbackN()
public:
virtual RT operator() (DECL) const
const CallbackN<TEMPL> &operator=(const CallbackN<TEMPL> &cb)

virtual bool operator==(const CallbackN<TEMPL> &cb) const
virtual bool operator!=(const CallbackN<TEMPL> &cb) const

I¥[I111177777777777771077777777777777777777777777777777777777777777777%/

template<TEMPL>
CallbackN<TEMPL> callback(RT (*pf) (TYPES))

template<TEMPL, class TAUX>
CallbackN<TEMPL> callback(RT (*pf) (TYPES, TAUX), TAUX aux)

template<class 0T, class MT, TEMPL>
CallbackN<TEMPL> callback(OT *po, RT (MT::*om) (TYPES))

template<class 0T, class MT, TEMPL, class TAUX>
CallbackN<TEMPL> callback(0T *po, RT (MT::*om) (TYPES, TAUX), TAUX aux)

template<TEMPL>
CallbackN<TEMPL> &callback(const CallbackN<TEMPL> &cb)

template<TEMPL, class TAUX>
CallbackN<TEMPL> callback(const CallbackN2<TEMPL, TAUX> &cb, TAUX aux)

10



